TOSHIBA MULTI-CHIP INTEGRATED CIRCUIT SILICON GATE CMOS TENTATIVE

PSEUDO SRAM AND NAND E²PROM MEMORY MIXED MULTI-CHIP PACKAGE

DESCRIPTION

The TH50VPN5640EBSB is a mixed multi-chip package containing a 32-Mbit(33,554,432)bit pseudo static RAM and a 64-Mbit(69,206,016)bit NAND E²PROM organized as 528bytes x 16pages x 1024blocks.

The power supply for the TH50VPN5640EBSB can range from 2.7 V to 3.1 V The TH50VPN5640EBSB is available in a 69-pin BGA package making it suitable for a variety of applications.

FEATURES

- Power supply voltage $V_{CCs} = 2.7 V \sim 3.1 V$ VCCn = 2.7 V~3.1 V
- Pseudo SRAM page read operation mode Page read operation by 4 words
- Current consumption
 - Operating: 30 mA maximum(CMOS level) 70 µA maximum(Pseudo SRAM CMOS level) Standby: 100 μA maximum(NAND E²PROM) Standby:
- NAND E²PROM Organization

Memory cell allay	$528 \times 16 \mathrm{K} \times 8$
Register	528×8
Page size	528 bytes
Block size	(8K + 256) bytes

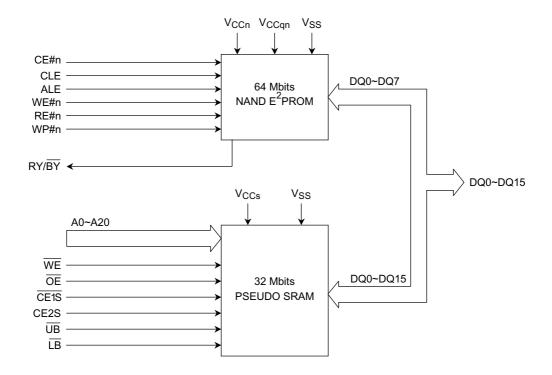
PIN ASSIGNMENT (TOP VIEW)

- NAND E²PROM memory modes Read, Reset, Auto Page Program Auto Block Erase, Status Read
- NAND E²PROM Mode control Serial input/output Command control
- Program/Erase Cycles 2.5E5 cycle (with ECC)
- Package P-FBGA69-1209-0.80A3:0.31 g (typ.)

PIN NAMES

	1	2	3	4	5	6	7	8	9	10
	\bigtriangledown									
А	NC									NC
в	NC									NC
С	NC		A7	ĹΒ	CLE	$\overline{\text{WE}}_{\text{/WE#n}}$	A8	A11		
D		A3	A6	UB	CE#n	CE2S	A19	A12	A15	
Е		A2	A5	A18	ALE	A20	A9	A13	NC	
F	NC	A1	A4	A17			A10	A14	V _{CCn}	NC
G	NC	A0	V _{SS}	DQ1			DQ6	NC	A16	NC
н		WP#n	$\overline{\text{OE}}$ /RE#n	DQ9	DQ3	DQ4	DQ13	DQ15	RY/BY	
J		CE1S	DQ0	DQ10	V _{CCqn}	VCCs	DQ12	DQ7	V _{SS}	
к			DQ8	DQ2	DQ11	NC	DQ5	DQ14		
L	NC									NC
М	NC									NC

A0~A20 Address Inputs A0, A1 Page Address Inputs for Pseudo SRAM DQ0~DQ15 Data Inputs/Outputs CE1S . CE2S Chip Enable Inputs for Pseudo SRAM CE#n Chip Enable Input for NAND E²PROM Output Enable Input for Pseudo SRAM OE / RE#n Read enable Input for NAND E²PROM Write Enable Input for Pseudo SRAM WF /WF#n Write Enable Input for NAND E²PROM LB, UB Data Byte Control Input for Pseudo SRAM RY/BY Ready/Busy Output WP#n Write Protect/Program Acceleration Input CLE Command Latch Enable ALE Address Latch Enable Power Supply for Pseudo SRAM V_{CCs} Power Supply for NAND E²PROM V_{CCn}, Vccqn Vss Ground Not Connected NC


000707EBA2

• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

- damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others
- The information contained herein is subject to change without notice.

BLOCK DIAGRAM

MODE SELECTION

OPERATION	CE1S	CE2S	OE RE#n	WE WE#n	ŪB	ĹΒ	CLE	ALE	CE#n	WP#n	DQ0~DQ7	DQ8~ DQ15	Add		
E ² PROM Serial Data Output	H *	* L	L	Н	*	*	L	L	L	*	D _{OUT}	Hi-Z	*		
E ² PROM	Н	*			*	*				*			*		
Output Disable	*	L	Н	Н	*	*	L	L	L	*	Hi-Z	Hi-Z	*		
E ² PROM	Н	*	*		*	*		-		*	S	(s		
Standby	*	L	Ť	н	Ŧ	Ŧ	L	L	н	Ť	5	S	5		
E ² PROM	Н	*		٦⊾	*	*				*			*		
Command Input	*	L	Н	<u>ک</u>	Ŧ	Ŧ	Н	L	L	Ť	COMAND-IN	Hi-Z	T		
E ² PROM	Н	*	н	Ъ	*	*	L		L	*	6	11: 7	*		
Data Input	*	L	н	<u>ل</u>	Ŧ	Ŧ	L	L	L	Ť	D _{IN}	Hi-Z	T		
E ² PROM	Н	*	н	Ъ	*	*	L	н	L	*	A	Hi-Z	*		
Address Input	*	L		<u>ل</u>		÷	L	п	L	÷	A _{IN}	⊓I-Z			
E ² PROM During	Н	*	Н	Н	*	*	*	*	*	Н	И	Hi-Z	*		
Programming	*	L	П	П	•					П	IN	⊓-∠			
E ² PROM	Н	*	н		Н	*	*	*	*	*	Н	N	Hi-Z	*	
During Erasing	*	L									IN	111-2			
E ² PROMProgra	Н	*	н	н	* Н	н	*	*	*	*	*	L	Ν	Hi-Z	*
m, Erase Inhibit	*	L								-	IN	111-2			
Pseudo SRAM	L	Н	L	Н	L	L	L	L	Н	*	D _{OUT}	D _{OUT}	**		
Pseudo SRAM READ	L	Н	L	Н	Н	L	L	L	Н	*	D _{OUT}	Hi-Z	**		
	L	Н	L	Н	L	Н	L	L	Н	*	Hi-Z	D _{OUT}	**		
Pseudo SRAM	L	Н	Н	L	L	L	L	L	Н	*	D _{IN}	D _{IN}	**		
WRITE	L	Н	Н	L	Н	L	L	L	Н	*	D _{IN}	Hi-Z	**		
	L	Н	Н	L	L	Н	L	L	Н	*	Hi-Z	D _{IN}	**		
Pseudo SRAM	L	Н	Н	Н	*	*	*	*	Н	*	Hi-Z	Hi-Z	**		
Output Disable	L	Н	L	Н	Н	Н	*	*	Н	*	Hi-Z	Hi-Z	**		
Pseudo SRAM Standby	Н	н	*	*	*	*	*	*	*	*	Ν	Ν	*		
Pseudo SRAM DeepPower-dow n Standby	Н	L	*	*	*	*	*	*	*	*	Ν	Ν	*		

Notes:*: Don't Care

**: At CEIS falling edge, all address(A2 to A20) are valid "IN". Page address signals(A0 and A1) must be V_{IH} or V_{IL}, during entire cycle.

D_{IN}: Data IN

AIN: Address In

D_{OUT}: Data Out

Hi-Z: High impedance

COMAND-IN: Command Input

N: Depends on $E^2 PROM$ memory operation mode

S: Depends on Pseudo SRAM operation Mode

Does not apply when CE#n = $\overline{CE1S}$ = V_{IL} and CE2S = V_{IH} at the same time.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RANGE	UNIT
V _{CC}	V _{CCs} /V _{CCn} Supply Voltage	-0.3~3.6	V
V _{IN}	Input Voltage	-0.3~3.6	V
V _{DQ}	Input/Output Voltage	–0.5~V _{CC} + 0.3 (≤ 3.6)	V
T _{opr}	Operating Temperature	-25~85	°C
PD	Power Dissipation	0.6	W
T _{solder}	Soldering Temperature (10 s)	260	°C
I _{short}	Output Short Circuit Current	100	mA
T _{stg}	Storage Temperature	-55~125	°C

RECOMMENDED DC OPERATING CONDITIONS (Ta = -25°~85°C)

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
V _{CCs} /V _{CCn} ,V _{CCqn} ,	Power Supply Voltage	2.7	_	3.1	
V _{IH}	Input High-Level Voltage	2.2	_	V _{CC} + 0.3	V
V _{IL}	Input Low-Level Voltage	-0.3	_	0.4	v
V _{DH}	Data Retention Voltage for Pseudo SRAM	2.5	_	3.0	

CAPACITANCE (Ta = 25°C, f = 1 MHz)

SYMBOL	PARAMETER	CONDITION	MIN	TYP.	MAX	UNIT
C _{IN}	Input Capacitance	$V_{IN} = GND$	_	_	15	pF
C _{OUT}	Output Capacitance	$V_{OUT} = GND$	_	_	20	pF

Note: These parameters are sampled periodically and are not tested for every device.

<u>DC CHARACTERISTICS</u> (Ta = -25° ~85°C, V_{CCs}/V_{CCn} = 2.7 V~3.1 V)

SYMBOL	PARAMETER	CONDITION			TYP.	MAX	UNIT
IIL	Input Leakage Current	V _{IN} = 0 V~V _{CC}		_	_	±10	μA
I _{SOH}	Pseudo SRAM Output High Current	V _{OH} = 2.0 V		-0.5	—	—	mA
I _{SOL}	Pseudo SRAM Output Low Current	V _{OL} = 0.4 V		1.0			mA
I _{FOH}	E ² PROM Output High Current (TTL)	V _{OH} = 2.4 V		-0.4			mA
I _{FOL}	E ² PROM Output Low Current	V _{OL} = 0.4 V		2.1	_	_	mA
I _{FOL} (RY/BY)	E ² PROM Output Current of RY/BY pin	V _{OL} = 0.4 V		_	8	_	mA
I _{LO}	Output Leakage Current	$V_{OUT} = 0.4V \sim V_{CC}, \overline{OE} = V_{IH}$		—	—	±10	μA
I _{CCO1}	E ² PROM Operating Current (Serial Read)	$\begin{array}{ll} CE \# n = V_{IL}, & I_{OUT} = 0 \text{ mA}, \\ t_{cycle} = 50 \mathrm{ns} \end{array}$				30	mA
I _{CCO2}	E ² PROM Operating Current (Command Input)	t _{cycle} = 50 ns			10	30	mA
I _{CCO3}	E ² PROM Operating Current (Data Input)	t _{cycle} = 50 ns			10	30	mA
I _{CCO4}	E ² PROM Operating Current (Address Input)	t _{cycle} = 50 ns		_	10	30	mA
I _{CCO5}	E ² PROM Programming Current	_		—	10	30	mA
I _{CCO6}	E ² PROM Erasing Current	_			10	30	mA
	Decude SDAM Operating Current	$CE2S = V_{IH}, \overline{CE1S} = Cycling$	t _{RC} = Min	_	_	40	mA
I _{CCO7}	Pseudo SRAM Operating Current	I _{OUT} = 0 mA,	t _{RC} = 1us	_	_	5	mA
I _{CCO8}	Pseudo SRAM Page Access Operating Current	$CE2S = V_{IH}, \overline{CE1S} = V_{IL},$ Page add. cycling, I _{OUT} = 0 mA		_	_	25	mA
I _{CCS1}	E ² PROM Standby Current(TTL)	CE#n= VIH		_	_	1	mA
I _{CCS2}	E ² PROM Standby Current(MOS)	CE#n= V _{CCn} - 0.2 V		_		100	μA
I _{CCS3}	Pseudo SRAM Standby Current (TTL)	$\overline{CE1S} = V_{IH}, CE2S = V_{IH}$		_	_	3	mA
I _{CCS4}	Pseudo SRAM Standby Current(MOS)	$\overline{CE1S} = V_{CCS} - 0.2 \text{ V}, CE2S = V_{CCS} - 0.2 \text{ V}$		_	_	70	μA
I _{CCS5}	Pseudo SRAM Deep Power-down Standby Current	CE2S = 0.2 V			_	5	μA

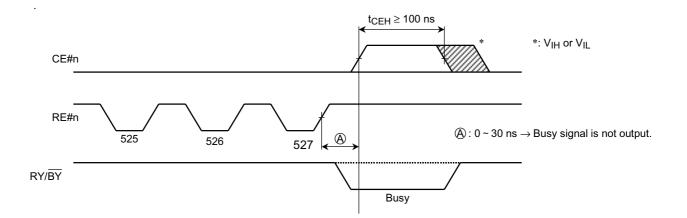
$\frac{AC\ CHARACTERISTICS\ AND\ OPERATING\ CONDITIONS(Pseudo\ SRAM)}{(Ta = -25^{\circ}C \sim 85^{\circ}C,\ V_{DD} = 2.7 \sim 3.1\ V)}$

SYMBOL	PARAMETER	MIN	MAX	UNIT
t _{RC}	Read or Write Cycle Time	100	—	ns
t _{CE}	CE1S Pulse Width	85	10000	ns
tp	Pre-charge Time	15	_	ns
t _{CEA}	CE1S Access Time	_	85	ns
tOEA	OE Access Time	_	85	ns
t _{OEP}	OE Pulse Width	85	10000	ns
t _{BEA}	LB, UB Access Time	_	25	ns
t _{APH}	Address(A0 and A1) Hold Time	85	_	ns
tASC	Address Set-up Time	-15		ns
t _{AHC}	Address Hold Time	70		ns
taso, tasw	Address Set-up Time	0		ns
t _{AHO} , t _{AHW}	Address Hold Time	70		ns
twhc	WE Hold Time	0	_	ns
t _{RCS}	Read Command Set-up Time	10		ns
t _{RCH}	Read Command Hold Time	10		ns
t _{WP}	WE Pulse Width	85	10000	ns
twch	CE1S to End of Write	85		ns
tCWL	Write Command to CE1S Lead Time	85		ns
twвн	LB, UB to End of Write	50	_	ns
tBWL	Write Command to \overline{LB} , \overline{UB} Lead Time	85	_	ns
t _{WR}	Write Recovery Time	0		ns
tDSW	Data Set-up Time from WE	30		ns
tDSC	Data Set-up Time from CE1S	30		ns
t _{DSB}	Data Set-up Time from LB, UB	30		ns
t _{DHW}	Data Hold Time from WE	0	_	ns
t _{DHC}	Data Hold Time from CEIS	0		ns
t _{DHB}	Data Hold Time from LB, UB	0		ns
tCLZ	CE1S Low to Output Active	10		ns
tolz	OE Low to Output Active	0		ns
t _{BLZ}	LB, UB Low to Output Active	0		ns
twlz	WE Low to Output Active	0		ns
t _{CHZ}	CEIS High to Output High-Z		20	ns
t _{OHZ}	OE High to Output High-Z		20	ns
t _{BHZ}	LB, UB High to Output High-Z		20	ns
twhz	OE High to Output High-Z		20	ns
tPC	Page Mode Cycle Time	25		ns
t _{AA}	Page Mode Address Acess Time		25	ns
t _{AOH}	Page Mode Output Data Hold Time	10		ns
t _{CS}	CE2S Set-up Time	0		ns
t _{CH}	CE2S Hold Time	200		μs
	CE2S Pulse Width(Deep Power Down)	10		μs ms
	CE2S Hold from CE1S (Power On)	0		ns
^t CHC t _{CHP}	CE2S Hold from Power On	30		μs

AC TEST CONDITIONS (Pseudo SRAM)

PARAMETER	CONDITION
Input Pulse Level	V _{CCS-} 0.2V, 0.2 V
Input Pulse Rise and Fall Time (10%~90%)	5 ns
Timing Measurement Reference Level (input)	V _{CCS} × 0.5
Timing Measurement Reference Level (output)	V _{CCS} × 0.5
Output Load	C _L (30 pF) + 1 TTL Gate

AC TEST CONDITIONS (NAND E²PROM)

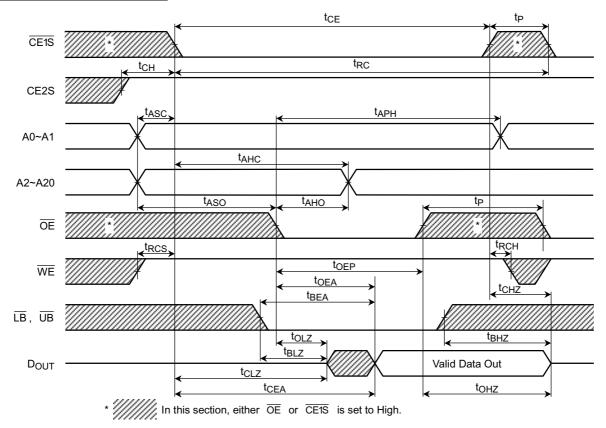

PARAMETER	CONDITION
Input Pulse Level	0.4 V, 2.4 V
Input Pulse Rise and Fall Time (10%~90%)	5 ns
Timing Measurement Reference Level (input)	$V_{CCn} imes 0.5$
Timing Measurement Reference Level (output)	$V_{CCn} imes 0.5$
Output Load	C _L (30 pF) + 1 TTL Gate

AC CHARACTERISTICS AND OPERATING CONDITIONS(NAND E²PROM)

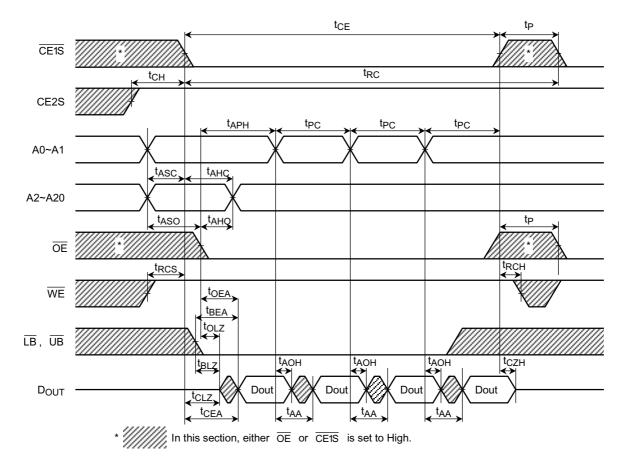
$(Ta = -25^{\circ}C \sim 85^{\circ}C, V_{DD} = 2.7 \sim 3.1 \text{ V})$

SYMBOL	PARAMETER	MIN	MAX	UNIT	NOTES
tCLS	CLE Setup Time	0		ns	
^t CLH	CLE Hold Time	10	_	ns	
tcs	CE#n Setup Time	0	_	ns	
tсн	CE#n Hold Time	10		ns	
tWP	Write Pulse Width	30	_	ns	
t _{ALS}	ALE Setup Time	0	_	ns	
tALH	ALE Hold Time	10		ns	
t _{DS}	Data Setup Time	20		ns	
^t DH	Data Hold Time	10		ns	
twc	Write Cycle Time	50		ns	
twн	WE#n High Hold Time	20		ns	
tww	WP High to WE#n Low	100		ns	
^t RR	Ready to RE#n Falling Edge	20		ns	
t _{RP}	Read Pulse Width	40		ns	
^t RC	Read Cycle Time	60		ns	
^t REA	RE#n Access Time (Serial Data Access)	_	40	ns	
^t CEA	CE#n Access Time (Serial Data Access)		45	ns	
^t REAID	RE#n Access Time (ID Read)	_	40	ns	
tон	Data Output Hold Time	10		ns	
^t RHZ	RE#n High to Output High Impedance	_	30	ns	
t _{CHZ}	CE#n High to Output High Impedance	_	20	ns	
t _{REH}	RE#n High Hold Time	20		ns	
t _{IR}	Output-High-impedance-to- RE#n Rising Edge	0		ns	
^t RSTO	RE#n Access Time (Status Read)	_	40	ns	
t _{CSTO}	CE#n Access Time (Status Read)	_	50	ns	
^t RHW	RE#n High to WE#n Low	0		ns	
twhc	WE#n High to CE#n Low	30	_	ns	
^t WHR	WE#n High to RE#n Low	30	_	ns	
t _{AR1}	ALE Low to RE#n Low (ID Read)	100	_	ns	
tCR	CE#n Low to RE#n Low (ID Read)	100	_	ns	
t _R	Memory Cell Array to Starting Address		25	μs	
tWB	WE#n High to Busy		200	ns	
t _{AR2}	ALE Low to RE#n Low (Read Cycle)	50	_	ns	1
tRST	Device Reset Time (Read/Program/Erase)		6/10/500	μs	1

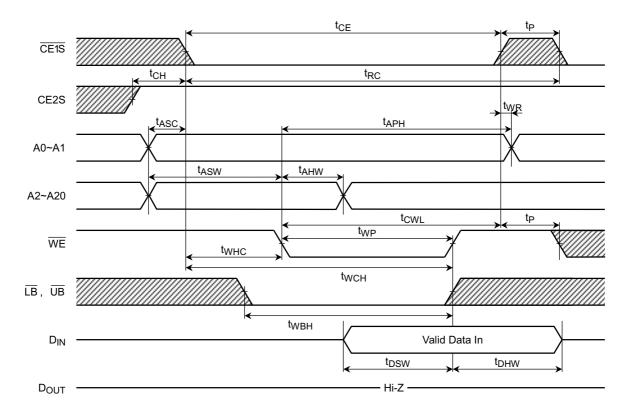
- Note: (1) CE#n High to Ready time depends on the pull-up resistor tied to the RY/BY pin. (Refer to Application Note (20) toward the end of this document.)
 - (2) Sequential Read is terminated when t_{CEH} is greater than or equal to 100 ns. If the RE#n to CE#n delay is less than 30 ns, RY/\overline{BY} signal stays Ready

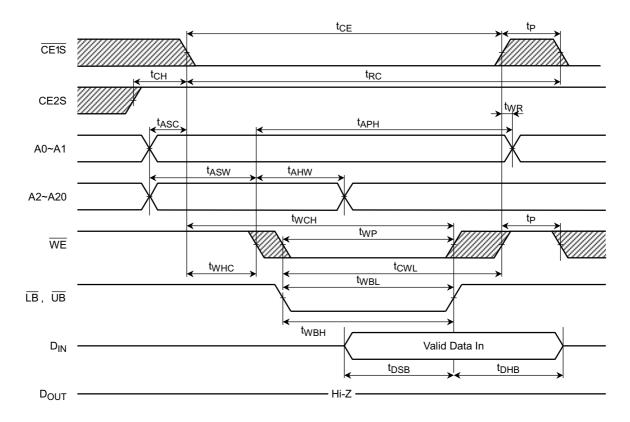

PROGRAMMING AND ERASING CHARACTERISTICS (Ta = -25° to 85, V_{CC} = 2.7 V to 3.1V)

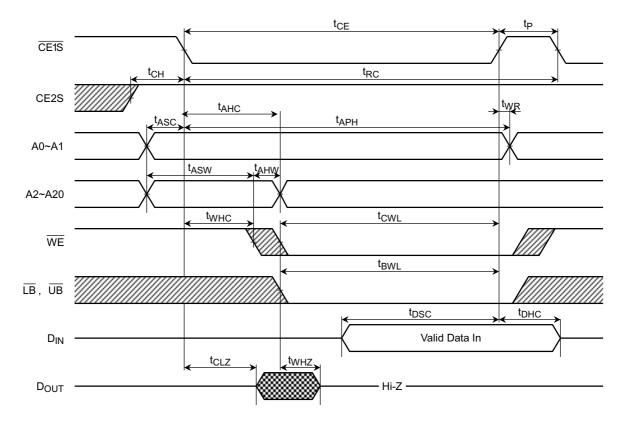
SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT	NOTES
t _{PROG}	Programming Time		200	1000	μs	
Ν	Number of Programming Cycles on Same Page			10		(1)
t _{BERASE}	Block Erasing Time	_	3	5	ms	


(1): Refer to Application Note (23) toward the end of this document.

TIMING DIAGRAMS


PSEUDO SRAM READ TIMING


PSEUDO SRAM PAGE TIMING (4 words access)

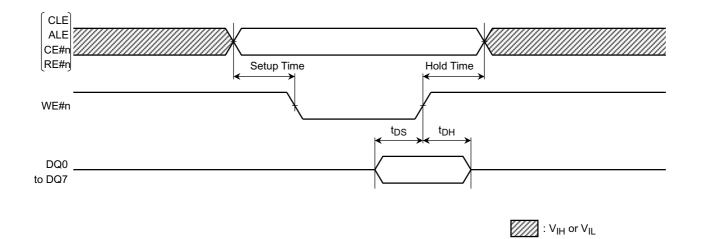

PSEUDO SRAM WRITE TIMING (WE Control Write)


PSEUDO SRAM WRITE TIMING (LB / UB Control Write)

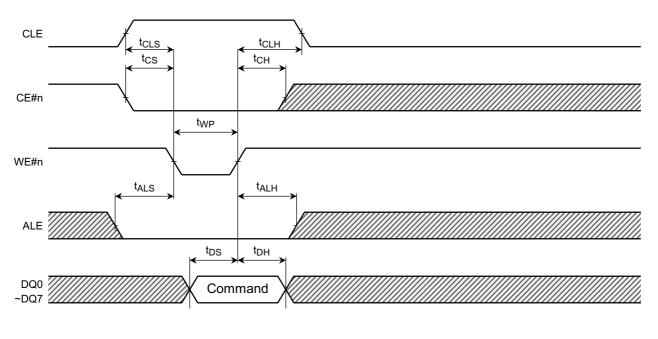
PSEUDO SRAM WRITE TIMING (CE1S Control Write)

POWER ON TIMING

The timing shown above is prohibited.

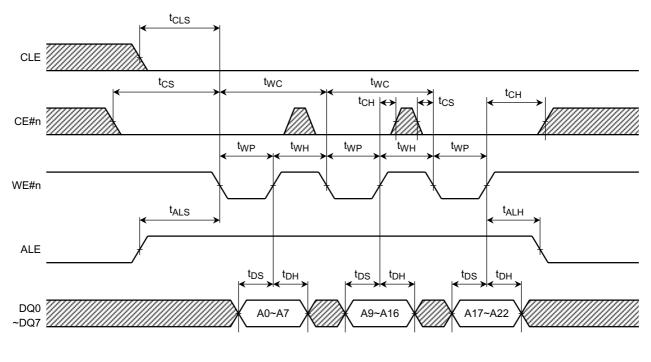

If both \overline{OE} and \overline{WE} go Low coincident with or before falling edge of $\overline{CE1S}$, a malfunction may occur since devices go into test modes for internal use.

APPLICATION NOTES AND COMMENTS

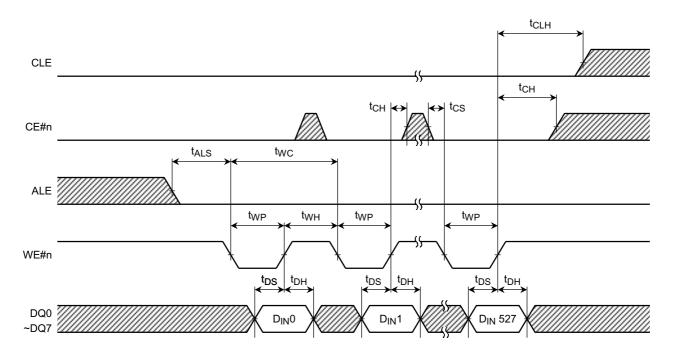

Note:

- (1) Stresses greater than listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- (2) All voltages are reference to GND.
- (3) ICCO depends on the cycle time.
- (4) ICCO depends on output loading. Specified values are defined with the output open condition.
- (5) After power-up, an initial pause of 200 µs with CE2S high is required with the output open condition.
- (6) AC measurements are assumed $t_T = 5$ ns.
- (7) Parameters tCHZ, tOHZ, tBHZ and tWHZ define the time at which the output goes the open condition and are not output voltage reference levels.
- (8) During write cycles, input data is latched on the earliest of WE, LB/UB or CE1S rising edge. Therefore, input data must be valid during the set-up time (tDSC, tDSB or tDSW) and hold time(tDHC, tDHB or tDHW).
- (9) Address(A2 to A20) inputs are latched on the falling edge of $\overline{CE1S}$. Therefore, addresses(A2 to A20) input must be valid during the set-up time (t_{ASC}) and hold time(t_{AHC}).
- (10) Data cannot be retained at deep power-down stand-by mode
- (11) If \overline{OE} is high during the write cycle, the outputs will remain at high impedance.
- (12) During the output state of DQ signals, input signals of reverse polarity must not be applied.

Latch Timing Diagram for Command/Address/Data

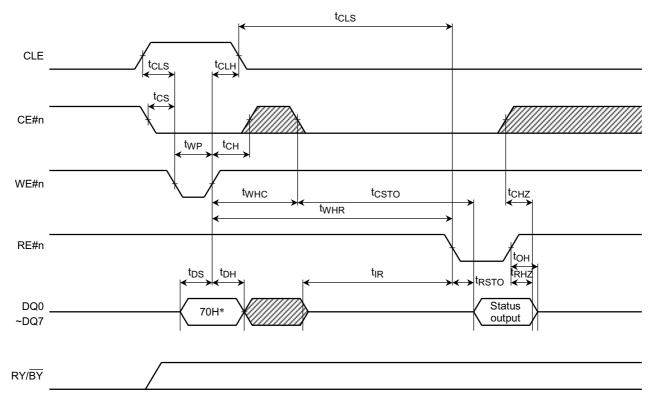


Command Input Cycle Timing Diagram


:VIH or VIL

Address Input Cycle Timing Diagram

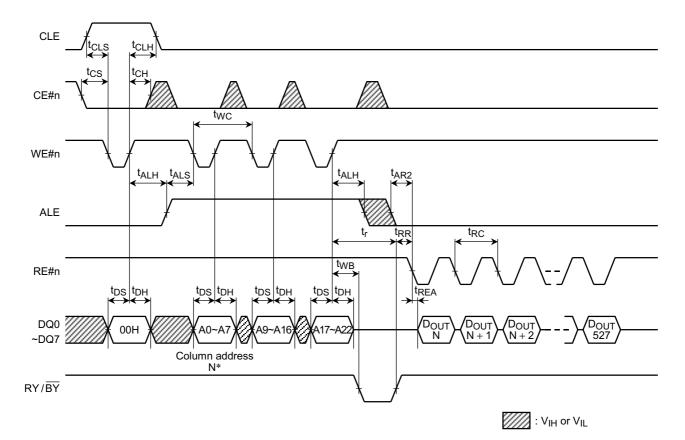
Data Input Cycle Timing Diagram



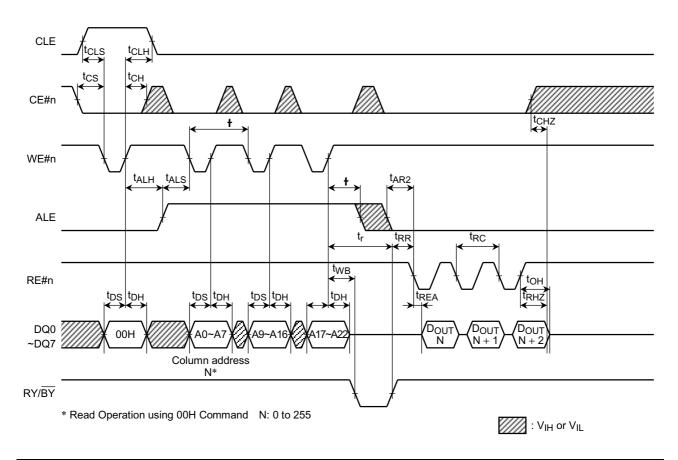
: VIH or VIL

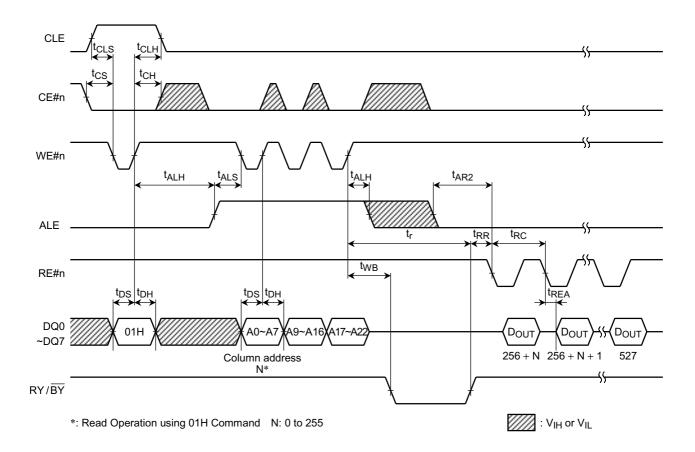
Serial Read Cycle Timing Diagram

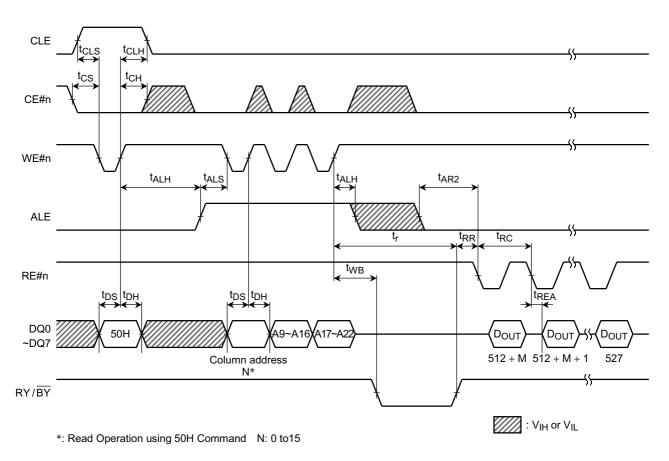
Status Read Cycle Timing Diagram

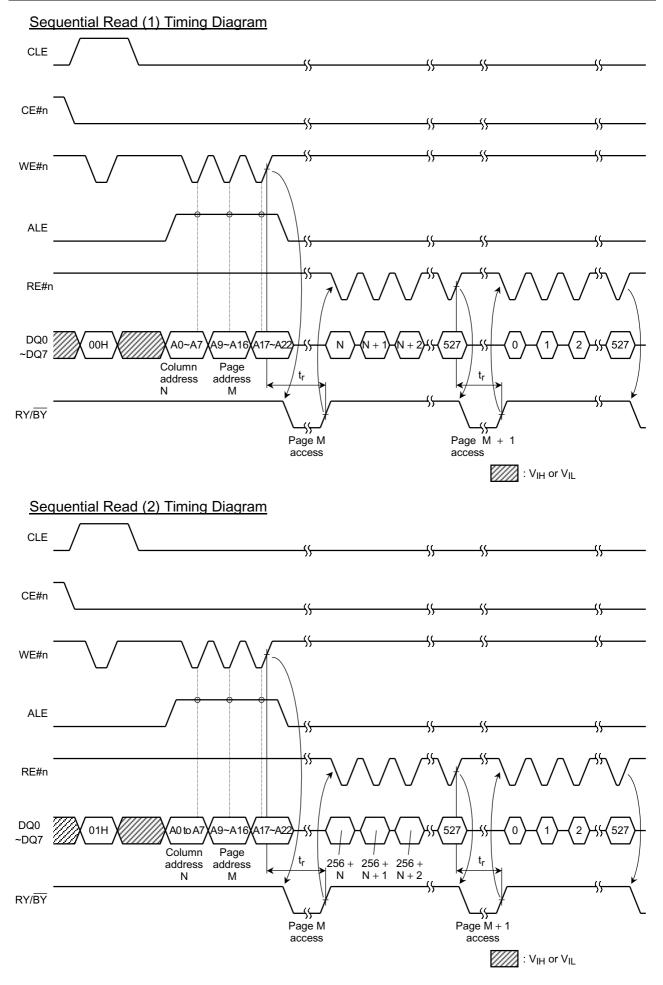


* 70H represents the hexadecimal number

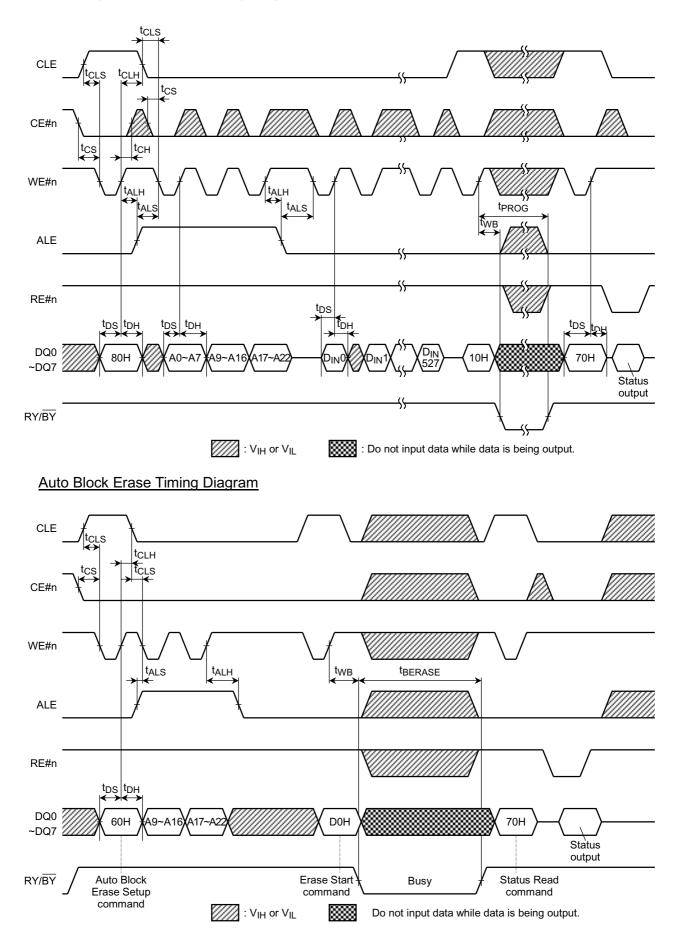


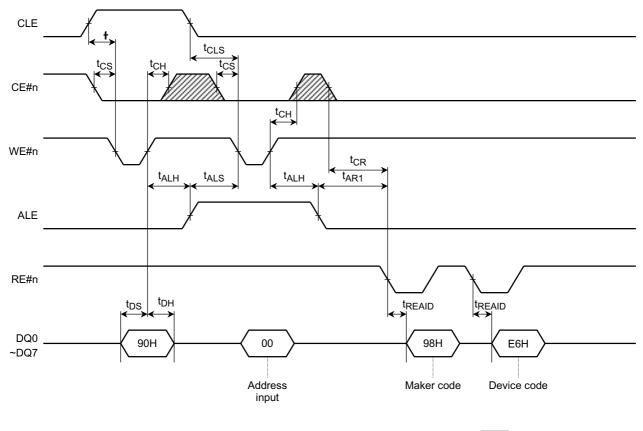

Read Cycle (1) Timing Diagram


Read Cycle (1) Timing Diagram: When Interrupted by CE#n



Read Cycle (2) Timing Diagram





Auto-Program Operation Timing Diagram

ID Read Operation Timing Diagram

: V_{IH} or V_{IL}

NAND PIN FUNCTIONS

Command Latch Enable: CLE

The CLE input signal is used to control loading of the operation mode command into the internal command register. The command is latched into the command register from the DQ port on the rising edge of the WE#n signal while CLE is High.

Address Latch Enable: ALE

The ALE signal is used to control loading of either address information or input data into the internal address/data register.

Address information is latched on the rising edge of WE#n if ALE is High.

Input data is latched if ALE is Low.

Chip Enable: CE#n

The device goes into a low-power Standby mode when CE#n goes High during a wait state. The CE#n signal is ignored when device is in Busy state (R/B= L), such as during a Program or Erase or Read operation, and will not enter Standby mode even if the CE#n input goes High.

Write Enable: WE#n

The WE#n signal is used to control the acquisition of data from the DQ port.

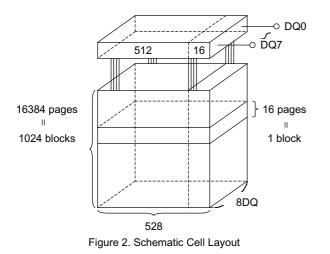
Read Enable: RE#n

The RE#n signal controls serial data output. Data is available t_{REA} after the falling edge of RE#n. The internal column address counter is also incremented (Address = Address + l) on this falling edge.

DQ Port: DQ0 to 7

The DQ0 to 7 pins are used as a port for transferring address, command and input/output data to and from the device.

Write Protect: WP#n


The WP#n signal is used to protect the device from accidental programming or erasing. The internal voltage regulator is reset when WP#n is Low. This signal is usually used for protecting the data during the power-on/off sequence when input signals are invalid.

Ready/Busy: RY/BY

The RY/\overline{BY} output signal is used to indicate the operating condition of the device. The RY/\overline{BY} signal is in Busy state ($RY/\overline{BY} = L$) during the Program, Erase and Read operations and will return to Ready state ($RY/\overline{BY} = H$) after completion of the operation. The output buffer for this signal is an open drain.

Schematic Cell Layout and Address Assignment

The Program operation works on page units while the Erase operation works on block units.

A page consists of 528 bytes in which 512 bytes are used for main memory storage and 16 bytes are for redundancy or for other uses.

1 page = 528 bytes

- 1 block = 528 bytes \times 16 pages = (8K + 256) bytes
- Capacity = 528 bytes $\times 16$ pages $\times 1024$ blocks

An address is read in via the DQ port over three consecutive clock cycles, as shown in Table 1.

Table	1.	Addressing	

	DQ7	DQ6	DQ5	DQ4	DQ3	DQ2	DQ1	DQ0
First cycle	A7	A6	A5	A4	A3	A2	A1	A0
Second cycle	A16	A15	A14	A13	A12	A11	A10	A9
Third cycle	*L	*L	A22	A21	A20	A19	A18	A17

A0~A7: Column address A9~A22: Page address (A13~A22: Block address A9~A12: NAND address in block

A8 is automatically set to Low or High by a 00H command or a 01H command.

*: DQ6 and DQ7 must be set to Low in the third cycle .

Operation Mode: Logic and Command Tables

The operation modes such as Program, Erase, Read and Reset are controlled by the ten different command operations shown in Table 3. Address input, command input and data input/output are controlled by the CLE, ALE, CE#n, WE#n, RE#n, WP#n and signals, as shown in Table 2.

Table 2. Logic table

	CLE	ALE	CE#n	WE#n	RE#n	WP#n
Command Input	Н	L	L		Н	*
Data Input	L	L	L		Н	*
Address Input	L	Н	L		Н	*
Serial Data Output	L	L	L	Н		*
	*	*	L	Н	Н	*
During Read (Busy)	*	*	н	*	*	*
During Programming (Busy)	*	*	*	*	*	н
During Erasing (Busy)	*	*	*	*	*	Н
Program, Erase Inhibit	*	*	*	*	*	L

H: V_{IH}, L: V_{IL}, *: V_{IH} \text{ or } V_{IL}

Table 3. Command table (HEX)

	First Cycle	Second Cycle	Acceptable while Busy
Serial Data Input	80	_	
Read Mode (1)	00	_	
Read Mode (2)	01	_	
Read Mode (3)	50	_	
Reset	FF	_	0
Auto Program	10	_	
Auto Block Erase	60	D0	
Status Read	70	—	0
ID Read	90		

HEX data bit assignment (Example)

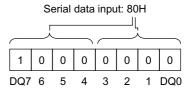
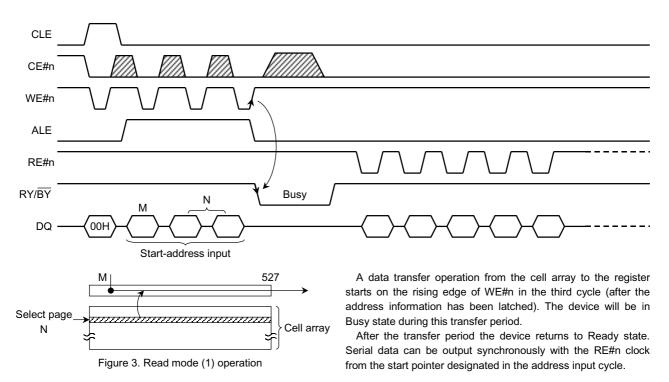
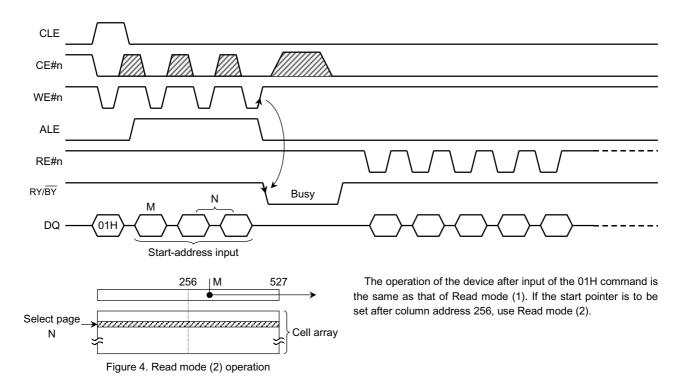


Table 4 shows the operation states for Read mode.

Table 4. Read mode operation states

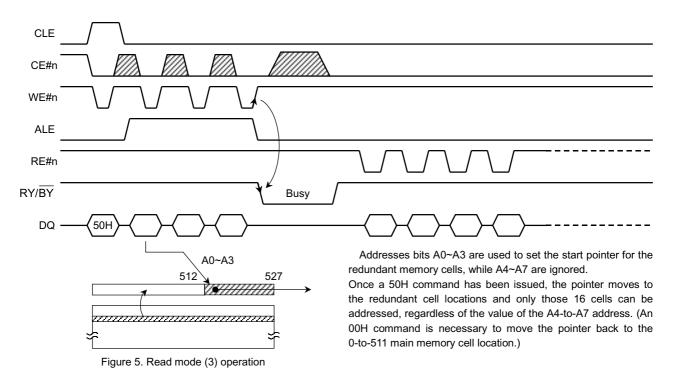

	CLE	ALE	CE#n	WE#n	RE#n	DQ0~DQ7	Power
Output Select	L	L	L	н	L	Data output	Active
Output Deselect	L	L	L	Н	Н	High impedance	Active

H: VIH, L: VIL


NAND DEVICE OPERATION

Read Mode (1)

Read mode (1) is set when a 00H command is issued to the Command register. Refer to Figure 3 below for timing details and the block diagram.


Read Mode (2)

Read Mode (3)

Read mode (3) has the same timing as Read modes (1) and (2) but is used to access information in the extra 16-byte redundancy area of the page. The start pointer is therefore set to a value between byte 512 and byte 527.

Status Read

The device automatically implements the execution and verification of the Program and Erase operations. The Status Read function is used to monitor the Ready/Busy status of the device, determine the result (pass/fail) of a Program or Erase operation, and determine whether the device is in Protect mode. The device status is output via the DQ port on the RE#n clock after a 70H command input. The resulting information is outlined in Table 5.

	STATUS		OUTPUT	
DQ0	Pass/Fail	Pass: 0	Fail: 1	
DQ1	Not Used	0		
DQ2	Not Used	0		The Pass/Fail
DQ3	Not Used	0		valid when the state.
DQ4	Not Used	0		State.
DQ5	Not Used	0		
DQ6	Ready/Busy	Ready: 1	Busy: 0	
DQ7	Write Protect	Protect: 0	Not Protected: 1	

Table 5. Status output table

The Pass/Fail status on DQ0 is only valid when the device is in the Ready state

An application example with multiple devices is shown in Figure 6.

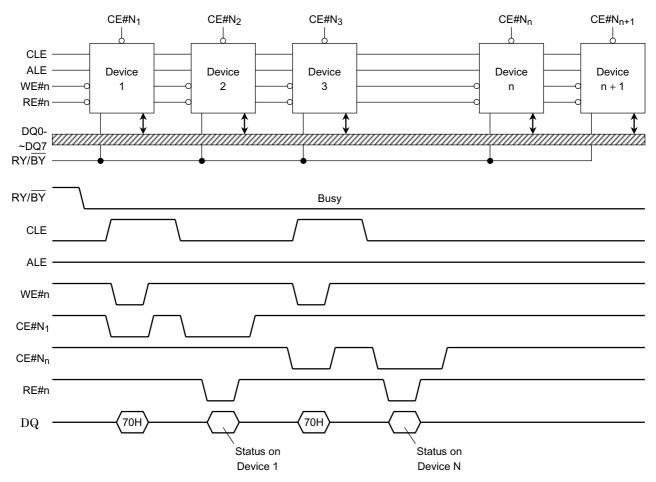
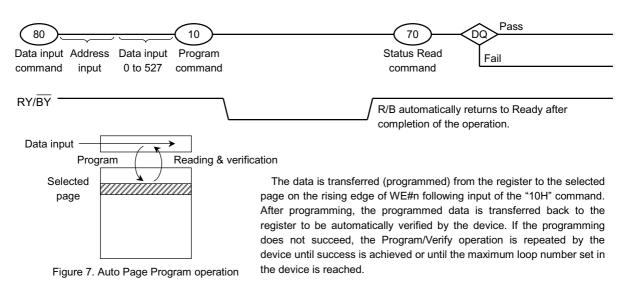
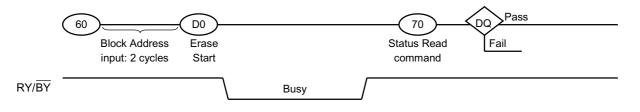



Figure 6. Status Read timing application example

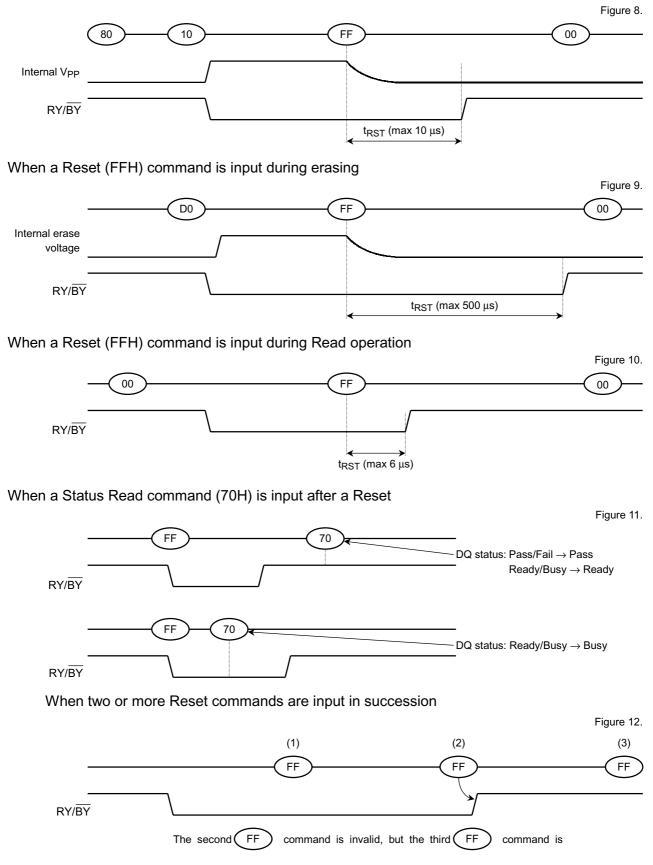
System Design Note: If the RY/\overline{BY} pin signals from multiple devices are wired together as shown in the diagram, the Status Read function can be used to determine the status of each individual device.


Auto Page Program

The device carries out an Automatic Page Program operation when it receives a "10H" Program command after the address and data have been input. The sequence of command, address and data input is shown below. (Refer to the detailed timing chart.)

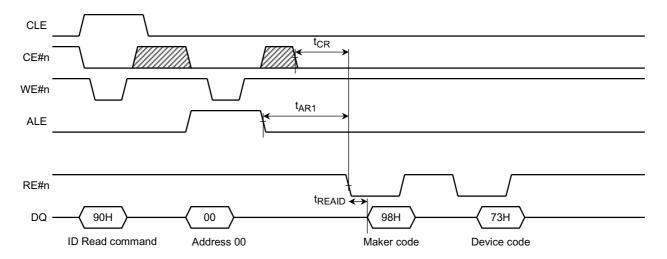
Auto Block Erase

The Auto Block Erase operation starts on the rising edge of WE#n after the Erase Start command "D0H" which follows the Erase Setup command "60H". This two-cycle process for Erase operations acts as an ertra layer of protection from aceidental erasure of data due to external noise. The device automatically executes the Erase and Verify operations.



<u>Reset</u>

The Reset mode stops all operations. For example, in the case of a Program or Erase operation the internally generated voltage is discharged to 0 volts and the device enters Wait state.


The response to an "FFH" Reset command input during the various device operations is as follows:

When a Reset (FFH) command is input during programming

ID Read

The TH50VPN5640EBSB contains ID codes which identify the device type and the manufacturer. The ID codes can be read out under the following timing conditions:

For the specifications of the access times t_{REAID} , t_{CR} and t_{AR1} refer to the AC Characteristics.

Figure 13. ID Read timing

Table 6. ID Codes read out by ID read comm	nand 90H
--	----------

	DQ7	DQ6	DQ5	DQ4	DQ3	DQ2	DQ1	DQ0	Hex Data
Maker code	1	0	0	1	1	0	0	0	98H
Device code	1	1	1	0	0	1	1	0	E6H

APPLICATION NOTES AND COMMENTS

(13) Power-on/off sequence:

The WP#n signal is useful for protecting against data corruption at power-on/off. The following timing sequence is necessary.

The WP#n signal may be negated any time after the V_{CC} reaches 2.5 V and CE#n signal is kept high in power up sequence.

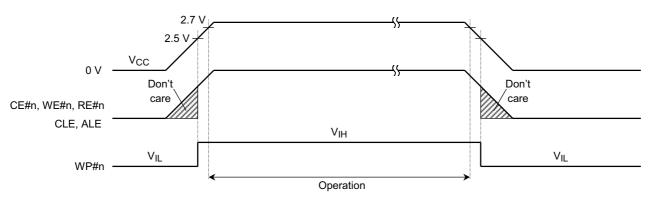
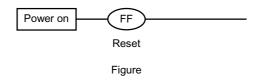



Figure 15. Power-on/off Sequence

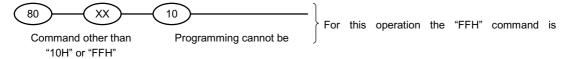
In order to operate this device stably, after $V_{\rm CC}$ becomes 2.5 V, it recommends starting access after about 200 $\mu s.$

(14)Status after power-on

The following sequence is necessary because some input signals may not be stable at power-on.

(15) Prohibition of unspecified commands

The operation commands are listed in Table 3. Input of a command other than those specified in Table 3 is prohibited. Stored data may be corrupted if an unknown command is entered during the command cycle.


(16) Restriction of command while Busy state

During Busy state, do not input any command except 70H and FFH.

(17) Acceptable commands after Serial Input command "80H"

Once the Serial Input command "80H" has been input, do not input any command other than the Program Execution command "10H" or the Reset command "FFH".

If a command other than "10H" or "FFH" is input, the Program operation is not performed.

(18) Status Read during a Read operation

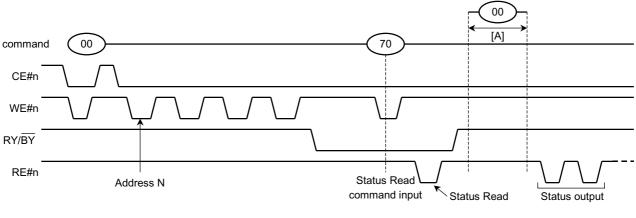


Figure 18.

The device status can be read out by inputting the Status Read command "70H" in Read mode.

Once the device has been set to Status Read mode by a "70H" command, the device will not return to Read mode.

Therefore, a Status Read during a Read operation is prohibited.

However, when the Read command "00H" is input during [A], Status mode is reset and the device returns to Read mode. In this case, data output starts automatically from address N and address input is unnecessary

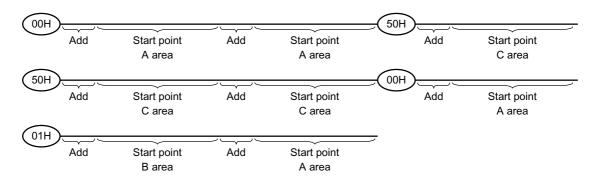
511 512 527

С

(19) Pointer control for "00H", "01H" and "50H"

The device has three Read modes which set the destination of the pointer. Table 7 shows the destination of the pointer, and Figure 14 is a block diagram of their operations.

Table 8. Pointe	r Destination		0	255 256
Read Mode	Command	Pointer	А	E
(1)	00H	0 to 255		
(2)	01H	256 to 511	\	~~~
(3)	50H	512 to 527	(1) 00H →	I
			(2) 01H → (3) 50H →	Pointer control


Figure 19. Pointer control

В

The pointer is set to region A by the "00H" command, to region B by the "01H" command, and to region C by the "50H" command.

(Example)

The "00H" command must be input to set the pointer back to region A when the pointer is pointing to region C.

To program region C only, set the start point to region C using the 50H command.

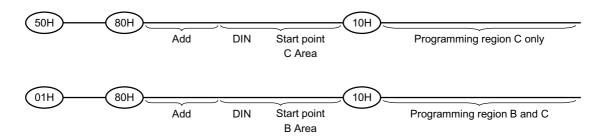
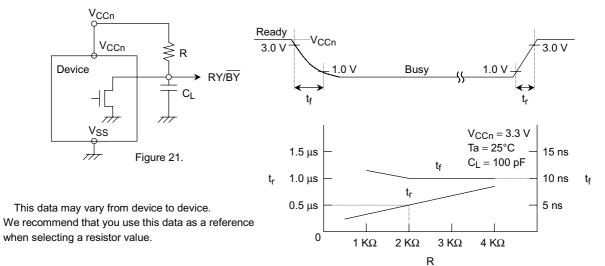
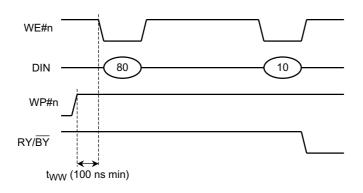
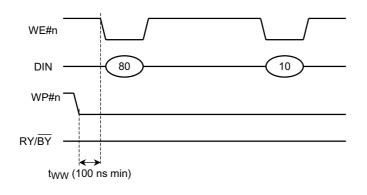



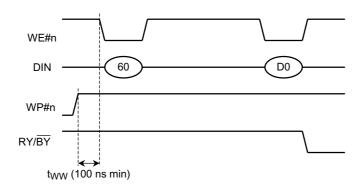
Figure 20. Example of How to Set the Pointer

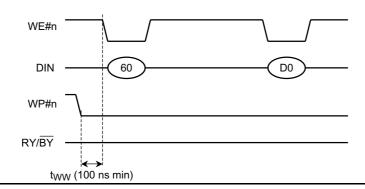
(20) $\rm RY/\overline{BY}$: termination for the Ready/Busy pin ($\rm RY/\overline{BY}$)


A pull-up resistor needs to be used for termination because the $\rm RY/\overline{BY}~$ buffer consists of an open drain circuit.

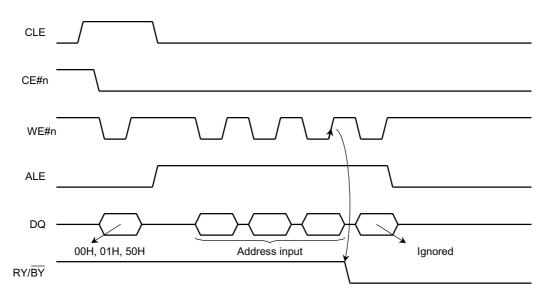

(21) Note regarding the WP#n signal

The Erase and Program operations are automatically reset when WP#n goes Low. The operations are enabled and disabled as follows:


Enable Programming


Disable Programming

Enable Erasing


Disable Erasing

(22) When four address cycles are input

Although the device may read in a fourth address, it is ignored inside the chip.

Read operation

Internal read operation starts when WE#n goes High in the third cycle.

Figure 22.

Program operation

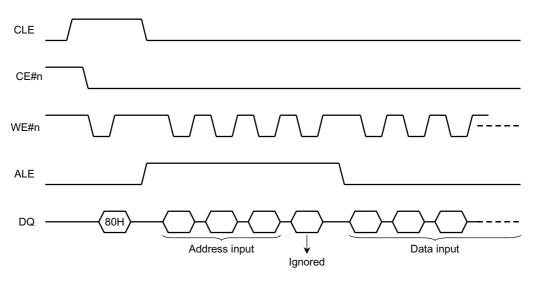
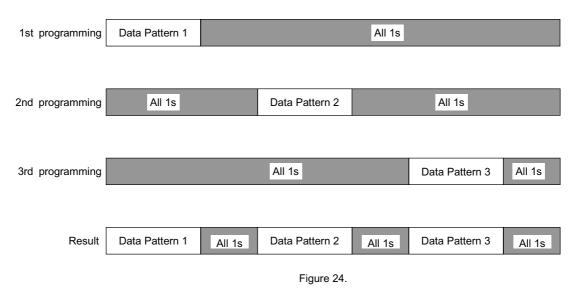



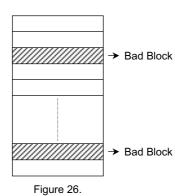
Figure 23.

(23) Several programming cycles on the same page (Partial Page Program)

A page can be divided into up to 10 segments. Each segment can be programmed individually as follows:

Note: The input data for unprogrammed or previously programmed page segments must be "1" (i.e. the inputs for all page bytes outside the segment which is to be programmed should be set to all "1").

(24) Note regarding the RE#n signal


RE#n The internal column address counter is incremented synchronously with the RE#n clock in Read mode. Therefore, once the device has been set to Read mode by a "00H", "01H" or "50H" command, the internal column address counter is incremented by the RE#n clock independently of the address input timing, If the RE#n clock input pulses start before the address input, and the pointer reaches the last column address, an internal read operation (array to register) will occur and the device will enter Busy state. (Refer to Figure 25.)

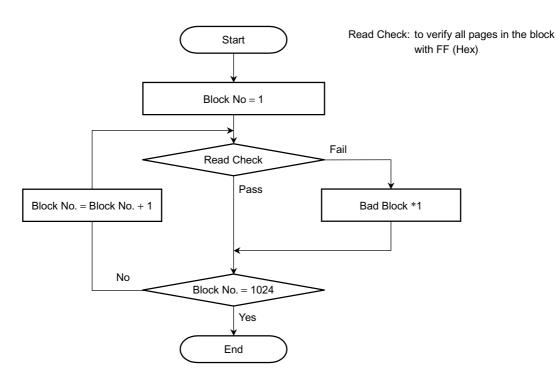
Hence th	ne RE#n clock input must start after the address input.	Address input
DQ -	00H/01H/50H	
-		
WE#n		
- RE#n		
-	`` `	
RY/BY	L	

Figure 25.

(25) Invalid blocks (bad blocks)

The device contains unusable blocks. Therefore, at the time of use, please check whether a block is bad and do not use these bad blocks.

At the time of shipment, all data bytes in a Valid Block are FFH. For Bad Block, all bytes are not in the FFH state. Please don't perform erase operation to Bad Block.


Check if the device has any bad blocks after installation into the system. Figure 27 shows the test flow for bad block detection. Bad blocks which are detected by the test flow must be managed as unusable blocks by the system.

A bad block does not affect the performance of good blocks because it is isolated from the Bit line by the Select gate

The number of valid blocks at the time of shipment is as follows:

	MIN	TYP.	MAX	UNIT
Valid (Good) Block Number	1014	—	1024	Block

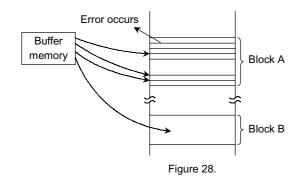
Bad Block Test Flow

*1: No erase operation is allowed to detected bad blocks

Figure 27

(26) Failure phenomena for Program and Erase operations

The device may fail during a Program or Erase operation.


The following possible failure modes should be considered when implementing a highly reliable system.

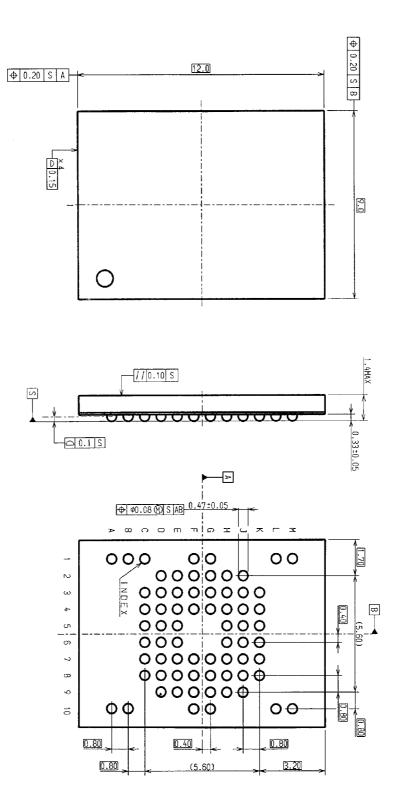
FAILURE MODE		DETECTION AND COUNTERMEASURE SEQUENCE	
Block	Erase Failure	Status Read after Erase \rightarrow Block Replacement	
Page	Programming Failure	Status Read after Program \rightarrow Block Replacement	
Single Bit Failure $1 \rightarrow 0$		(1) Block Verify after Program \rightarrow Retry	
		(2) ECC	

• ECC: Error Correction Code

Block Replacement

Program 199

When an error happens in Block A, try to reprogram the data into another Block (Block B) by loading from an external buffer. Then, prevent further system accesses to Block A (by creating a bad block table or by using an another appropriate scheme).


Erase

When an error occurs in an Erase operation, prevent future accesses to this bad block (again by creating a table within the system or by using another appropriate scheme).

PACKAGE DIMENSIONS

TOSHIBA

P-FBGA69-1209-0.80A3

Unit: mm

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.